
  



1. Introduction 

1. 1 Background and Context 

One of the most pressing global issues today is energy security. With the world's population and energy 
consumption increasing rapidly, and the demand continues to grow, access, efficiency, and 
conservation of energy become even more pertinent (Santos et al., 2023). From the 1990s to 2014, 
global energy consumption increased by 151% (International Energy Agency, 2020).  
 
Africa, in particular, has one of the fastest-growing and youngest populations in the world, thus an 
increase in energy demand. According to the International Energy Agency (IEA), one in two people 
added to the global population between now and 2040 is likely to be from Africa (IEA, 2020). Reliable 
energy access is vital for sustainable development, and for efficiency in sectors such as agriculture, 
health, transportation, and housing (Nyarko et al., 2023). However, despite the rapid population growth 
and increased energy demand in Africa, there remains a significant energy access deficit, especially in 
Sub-Saharan Africa (Quansah et al., 2016). This affects the continent’s access to essential resources 
like electricity and clean cooking fuels, which negatively impacts its development (Nyarko et al., 2023). 
Figure 1.1 shows how far the continent is lagging compared to the rest of the world in terms of 
utilization despite the high demand for clean, reliable energy.  
 

 
 

Figure 1.1 Wind and solar power plants across the globe (Sachit et al., 2022) 
 

Climate change and environmental degradation are pressing global challenges, with Africa especially 
vulnerable due to its limited adaptive capacity and reliance on climate-sensitive resources. The 
Intergovernmental Panel on Climate Change (IPCC) highlights that Africa is experiencing temperature 
rises faster than the global average, intensifying droughts, reducing water availability, and 
compromising food security (IPCC, 2023). The World Bank warns that without significant global action, 
climate change could push an additional 100 million people into poverty by 2030, disproportionately 
affecting African nations (Roome, 2015). These factors highlight the urgency of transitioning to 
sustainable energy solutions like renewable energy systems, which are gaining traction worldwide due 
to their potential to enhance energy security, mitigate environmental impact, and improve air quality 
(Abualigah et al., 2022; Alam et al., 2020). Particularly in Africa, the shift towards renewable energy 
technologies especially wind and solar systems is crucial not only for their lower environmental and 



safety risks compared to conventional energy sources but also as a strategic response to the region’s 
unique vulnerabilities to climate change (Singh et al., 2021). 

Solar energy, derived from the sun’s radiant energy, is captured through photovoltaic cells or solar 
thermal systems, which convert sunlight directly into electricity or heat. Meanwhile, wind energy 
systems harness the kinetic energy of wind using turbines which convert this mechanical energy into 
electrical energy. These renewable energy (RE) technologies not only provide significant environmental 
benefits by mitigating climate change but also are becoming more cost-effective due to continual 
declines in costs and advancements in storage solutions like batteries. AI-driven optimization further 
enhances the efficiency and cost-effectiveness of these technologies, making them increasingly viable 
for widespread adoption (Alzain et al., 2023; Behzadi & Sadrizadeh, 2023). As the main drivers of 
energy system expansion in Africa, solar and wind power are poised to close Africa's energy gap cost-
efficiently and in a climate-compatible manner, emerging as the primary carriers of low-cost renewable 
electricity (Oyewo et al., 2023). Solar photovoltaics (PVs), in particular, are seen as the most cost-
effective energy source for the African continent due to their abundant availability and significant cost 
reductions in technology (Oyewo et al., 2023). A strategic focus on wind and solar energy, supported by 
advanced AI techniques, will position Africa to leapfrog into a sustainable and demand-oriented energy 
system for the future.   

1.2 Problem Statement  

The paradox in Sub-Saharan Africa (SSA) is that despite the richness of renewable energy sources, 
they remain largely untapped, which is unhelpful to the severe energy scarcity that undercuts socio-
economic development across the continent (Agoundedemba et al., 2023; Mukhtar et al., 2023). The 
underutilization of renewable energy in Africa primarily stems from inadequate infrastructure, 
compounded by low investment levels and multiple uncertainties, including fluctuating weather 
conditions, inconsistent energy demands, and regulatory challenges. Despite the continent's vast 
potential, annual investments required to meet energy and climate goals are far from being met, with 
current investments representing only a fraction of the necessary funding (IEA, 2024). This shortfall is 
compounded by the "Africa infrastructure paradox," where despite a substantial pipeline of projects and 
available funding, many initiatives fail to reach financial close due to inadequate feasibility studies, poor 
planning, and insufficient project management capabilities (Thusi & Mlambo, 2023; Mercer et al., 2021; 
OECD/ACET, 2020). Additionally, clean energy investments in Africa have drastically declined, 
receiving just 0.6% of global renewable energy funding, severely limiting the expansion of essential 
infrastructure (United Nations Development Programme, 2023; RES4Africa Foundation, 2023). The 
uncertainties surrounding renewable energy projects—caused by fluctuating weather patterns, shifts in 
energy demand, and technological limitations—further deter investment, as investors and governments 
are wary of low or no returns on investment (International Renewable Energy Agency (IRENA), 2018; 
IEA, 2023). These multifaceted challenges highlight the critical need for a more strategic approach to 
developing the necessary infrastructure and mitigating uncertainties in the renewable energy sector 
across Africa. 
 
The uncertainties in the renewable energy sector present complex challenges that can be effectively 
managed through the use of artificial intelligence (AI) and machine learning (ML) technologies. These 
advancements are achieved through data-driven insights, predictive analytics, and sophisticated 
optimization techniques. This involves geospatial analysis to determine areas with the highest solar 
irradiance and wind speed, which can significantly enhance energy output (Salleh et al., 2022). 
Moreover, AI and ML help in selecting the appropriate technologies for specific sites. For instance, they 
can determine whether a location would benefit more from thin-film solar panels or crystalline-based 
solar panels, or dictate the specific type of wind turbine that would maximize efficiency based on local 
wind patterns (Kurniawan & Shintaku, 2022). These algorithms also streamline the distribution of 



essential resources—such as land, materials, and labor—needed to establish and maintain these 
installations. They can predict the optimal layout of solar panels and wind turbines to avoid shadowing 
and wake effects, thereby maximizing the generation capacity (Babawarun et al., 2023). This 
optimization not only streamlines project development processes but also enhances the overall 
effectiveness of investments in renewable energy. Furthermore, AI and ML technologies enable the 
prediction of maintenance needs for renewable energy infrastructure by analyzing data from sensors 
and monitoring equipment to identify potential issues before they become critical (Flaieh et al., 2020; 
Concepcion II et al., 2021; Bustamam et al., 2020). This proactive maintenance approach reduces 
downtime, extends equipment lifespan, and improves system reliability (Capote-Leiva et al., 2022). AI 
and ML aid professionals in the renewable energy sector in making informed decisions, enhancing 
system performance, and accelerating the shift toward sustainable energy (Danish, 2023). Figure 1.2 
shows an overview of the history of AI applications in the energy sector. 
 

 
 
Figure 1.2 History of AI in the energy sector (Danish, 2023) 
 
The following study on the application of Artificial Intelligence (AI) and Machine Learning (ML) in the 
optimization of renewable energy is highly beneficial for multiple reasons. It addresses the critical need 
for sustainable energy solutions by demonstrating how AI and ML technologies can improve the 
efficiency, reliability, and efficiency of renewable energy systems (Danish, 2023; Nguyen et al., 2024). 
This research highlights the interdisciplinary nature of this developing field in Africa, linking renewable 
energy studies with advancements in AI and ML. By synthesizing current research in Africa and 
emphasizing key trends and challenges, it informs decision-makers, policymakers,  and industry 
stakeholders about the potential impacts of integrating AI and ML into renewable energy. This literature 
review will serve as an educational resource for students, researchers, and professionals seeking to 
explore the potential of AI/ML applications in renewable energy. The aim is for this research to expand 
knowledge, foster innovation, and accelerate the transition towards clean and sustainable energy in 
Africa. 



1.3 Research Objectives and Questions 

 
General Objective 
Explore the implementation of AI-driven simulations in optimizing wind and solar photovoltaic (PV) 
energy farms in Africa. 
 
Research Questions 
The research questions designed to guide this study include: 

i.What are the potential benefits and limitations of applying AI-driven simulations in the planning and 
executing of renewable energy projects in energy-scarce African regions? 

ii.How can AI-driven simulations help overcome the infrastructural and financial barriers that currently 
impede renewable energy adoption in Africa?  

1.4  Methodology 

This research adopts a robust methodology centered around an extensive literature review. It is 
designed to rigorously examine the integration of AI-driven simulations in enhancing the design and 
implementation of renewable energy projects. The methodology is meticulously crafted to evaluate the 
potential of AI technologies in transforming the renewable energy sector in energy-scarce African 
regions, focusing specifically on the applicability of modeling and simulations. 

1.4.1 Rationale for Study Selection 

Selection of the studies involved systematically searching databases such as IEEE Xplore, 
ScienceDirect, and the Web of Science to identify articles that meet the inclusion criteria. Keywords 
such as "case study," "AI models," "wind energy," "solar energy," "existing data," "reanalysis," and 
"renewable energy" are used to filter relevant studies. Each article is then evaluated based on its 
abstract and methodology to ensure it provides insight into the application of AI-driven simulations in 
renewable energy. 

a. Inclusion Criteria: 

• Studies that focus on the application of AI technologies in renewable energy systems, 
particularly those employing modeling and simulations. 

• Articles published in peer-reviewed academic journals and reputable industry reports. 
• Research conducted or reviewed within the last ten years, to ensure relevance to current 

technology and market conditions. 
• Studies that provide empirical data on the outcomes of AI applications in energy systems. 
• Articles that include case studies or real-world applications of AI in energy contexts in regions 

in or analogous to the Sub-Saharan environment. 
 
 

b. Exclusion Criteria: 
• Articles published more than ten years ago, to avoid outdated technological insights. 
• Studies that do not focus on renewable energy sources. 
• Papers that lack empirical evidence or adequate methodological detail. 
• Research focuses solely on theoretical AI models without practical or applied testing. 
• Studies done outside Africa. 

 

2. Literature Review 



2.1 Energy Scarcity in Sub-Saharan Africa (SSA) 

 
Mukhtar et al. (2023) report that more than 600 million in SSA face acute energy poverty and 900 
million people do not have access to clean cooking fuels. Unfortunately, the efforts to address this 
energy deficit are still being outpaced by the region's population growth. The 20 least electrified 
countries in the world are located in Sub-Saharan Africa (Statista, 2023). Ritchie (2023) reports that the 
number of people without electricity worldwide has halved over the last two decades. Nevertheless, in 
Sub-Saharan Africa, the figure has remained fairly constant; 8 out of 10 people do not have electricity. 
Additionally, there is a great disparity between electrification in the urban and rural areas where 80% of 
people in the urban dwellers have access to electricity while in rural areas, only 30% of people have 
electricity. Countries with less than 30% of electricity access rate in the world in 2021 are in SSA 
including South Sudan (7.7%), Burundi(10.2%), Chad(11.3%), Malawi(14.2%), Central African 
Republic(15.7%), Niger(18.6%), Burkina Faso (19%), Dem. Republic of the Congo(20.8%), Sierra 
Leone(27.5%) and Liberia(29.8%) (Statista, 2023). 
 
This lack of access to energy has multifaceted effects on both individuals and communities. A report by 
the World Bank highlights that inadequate access to clean energy for cooking results in indoor air 
pollution, leading to respiratory diseases that disproportionately affect women and children in rural 
areas (The World Bank, n.d.). Also, hospitals often lack electricity to power medical devices and 
refrigerate vaccines, affecting healthcare delivery and exacerbating health outcomes (Adair-Rohani et 
al., 2013). The situation also exacerbates the economic challenges, as energy is a fundamental 
economic growth and development driver. Power outages cost African economies about 2-4% of their 
GDP annually (Copinschi, 2022; RES4Africa Foundation, 2023; African Development Bank, 2019). 
Furthermore, inadequate access to electricity impacts access to information and technology, 
exacerbating the digital divide and hindering educational opportunities and overall quality of life on the 
continent (Sarkodie & Adams, 2020). And not forgetting the heavy reliance on coal, oil, and natural gas, 
which constitute approximately 80% of total electricity production in the continent, continues to 
contribute to environmental degradation and carbon emissions, thus countering global efforts to combat 
climate change (Agoundedemba et al., 2023). 
 

2.2 Untapped potential of renewable energy resources in Africa/SSA 

 

Africa is endowed with abundant renewable energy resources, including wind, solar, hydro, biomass, 
and geothermal power. These resources present a significant opportunity to address the energy access 
challenge and promote sustainable development across the continent. The continent receives ample 
sunlight throughout the year, making solar energy particularly promising, with vast solar potential 
estimated at 11 terawatts (TW) (African Development Bank, 2019). Wind energy capacity is also 
substantial, estimated at 110 gigawatts (GW) (RES4Africa Foundation, 2023). These renewable 
sources offer decentralized and scalable solutions suitable for both grid-connected and off-grid 
applications, particularly in rural areas (Agoundedemba et al., 2023; Samatar et al., 2023). Average 
electricity consumption per capita in sub-Saharan Africa stands at around 180 kWh, with stark contrasts 
within the region, such as rural areas consuming approximately 5 kWh monthly compared to urban 
centers like Nairobi where usage reaches 200 kWh (Castellano et al., 2015; Tesfamichael et al., 2020; 
African Development Bank Group, 2019). A single gigawatt of wind power, sufficient for approximately 
166,000 to 400,000 households based on regional energy usage variations, means the 110 gigawatts 
of estimated wind capacity could power between 18.3 million and 44 million homes. Just 50% of the 
Solar energy in the region could theoretically meet the electricity needs of the entire continent several 



times over, highlighting its capability to significantly exceed Africa's current and projected residential 
energy demands.  

Sub-Saharan Africa (SSA) with its high solar irradiance and substantial wind potential, is well-suited to 
harness these resources to meet growing energy demands sustainably (Adedeji et al., 2021; Ebhota & 
Tabakov, 2023). Deploying wind and solar energy systems can enhance energy security by reducing 
dependence on imported fossil fuels and diversifying the energy mix, thereby decreasing supply 
disruptions (Bilal et al., 2022; Bouabdallaoui et al., 2023). Moreover, decentralized, modular, and 
scalable systems such as solar PVs and wind power are less prone to cost overruns and technical 
failures compared to large hydropower projects. While hydropower has historically been a dominant 
energy source due to its significant power output, it is increasingly being reconsidered in the energy 
transition. The shift is driven by faced challenges including technical failures, environmental impacts, 
and the growing incidence of droughts exacerbated by climate change (Sovacool et al., 2023; 
International Energy Agency, 2023). Moreover, wind and solar power technologies present lower 
investment barriers, with initial setup costs being more affordable and AI and machine learning 
advancements further optimizing their efficiency and cost-effectiveness (Adun et al., 2022; Alzain et al., 
2023). AI-driven predictive models have significantly improved the operational efficiency of these 
systems, making them more financially viable and reliable (Behzadi & Sadrizadeh, 2023). Additionally, 
wind and solar technologies significantly reduce greenhouse gas emissions, aiding global climate 
change mitigation efforts and supporting sustainable development goals in SSA (Al-Buraiki & Al-
Sharafi, 2021). Their decentralized nature makes them ideal for deployment in remote and underserved 
areas, providing clean energy access where traditional grid extensions are impractical or too costly 
(Nyarko et al., 2023; RES4Africa Foundation, 2023). 

 

2.3 What is Artificial Intelligence (AI)? 

Artificial Intelligence (AI) refers to using computer systems to perform tasks that normally require 
human intelligence. These tasks include learning from data, making decisions based on this data, and 
solving complex problems. AI is particularly suited for the renewable energy sector because of its ability 
to process and analyze vast amounts of data quickly and accurately, which is crucial for optimizing 
energy systems and integrating renewable sources efficiently (Benti et al., 2023). Three types of  AI are 
relevant to renewable energy optimization. Machine Learning (ML) is a subset of AI that involves 
training a system to learn from data and improve its performance over time without being explicitly 
programmed (Benti et al., 2023).  ML is applied in renewable energy to forecast demand and supply, 
optimize energy distribution, and predict equipment maintenance needs (Forootan et al., 2022).  Deep 
learning is an advanced form of ML that uses neural networks and is particularly effective in processing 
and interpreting vast amounts of unstructured data, such as satellite images, to monitor solar farms or 
wind parks (Abualigah et al., 2022). Reinforcement learning is a subset of AI that involves algorithms 
that learn to make sequences of decisions by trial and error, optimizing the operation of energy 
systems, such as dynamically adjusting power loads or storage systems to balance supply and demand 
in real time (Specht & Madlener, 2023). 
 
AI holds significant promise for optimizing the transition towards renewable energy sources due to its 
advanced computational capabilities and efficiency in managing complex systems. AI's ability to predict 
when renewable energy system components will likely fail or require maintenance is revolutionary. 
According to Onwusinkwue et al. (2024), AI algorithms can analyze data from sensors on wind turbines 
to anticipate equipment failures before they occur. This predictive capacity reduces downtime and 
minimizes maintenance costs, enhancing renewable energy installations' overall efficiency and lifespan. 
AI significantly enhances the accuracy of energy demand and supply forecasts.  Bouquet et al. (2023) 
implemented an LSTM-based Deep Learning model for precise solar electricity forecasting, 



demonstrating its effectiveness in aiding power grid operators with stable electricity supply planning in 
short-term forecasting within minutes. AI facilitates more efficient grid management and helps mitigate 
the variability associated with renewable energy sources. 
 
Google’s DeepMind is one example of AI in big data analysis for renewable energy. This AI application 
predicts wind power output 36 hours ahead of actual generation (Elkin & Witherspoon, 2019). Such 
predictive capability is invaluable for grid operators, as it allows for better integration of intermittent wind 
power into the power grid, optimizing both renewable resources and grid operations. Another example 
is Siemens Energy which utilizes AI-powered digital twins to create virtual models of wind farms before 
actual construction (Scopelliti, 2023). This technology enables operators to optimize the layouts and 
operations of these farms, ensuring maximum efficiency and effectiveness from the planning stage 
through to operation. 
 

2.4. Review of Solar power systems and AI Applications + Simulations and Modelling 

2.4.1 Review of Solar Energy Power Systems and AI Application 

Although many regions in Africa receive over 2,000 kWh of solar radiation annually, the continent has 
yet to experience significant development in solar energy power plants (Quansah et al., 2016). This 
immense and ubiquitous energy source has the potential to meet SSA's energy demands (Santos et al., 
2023).  Despite the promising outlook, several critical obstacles must be overcome for Africa's power 
sector to fully harness the potential of utility-scale solar PV systems. The primary challenges are linked 
to the technical capacity of grid infrastructure and the reserve capacity in most Sub-Saharan African 
(SSA) countries (Nyarko et al., 2023). Solar energy availability fluctuates significantly throughout the 
day and is non-existent at night, leading to variability in power output (Alderman et al., 2023). This 
inconsistency presents substantial difficulties for grid operators, which must maintain balance and 
stability in electricity transmission and distribution systems. According to an IEA report on integrating 
variable renewable resources into electricity grids, grid systems need to incorporate flexible resources 
to handle the intermittency of renewable energy production (International Energy Agency, 2020).  



 
 
Figure 2.1 Solar energy potential in Africa (Global Solar Atlas, n.d.) 
 
In the realm of solar energy, artificial intelligence has become increasingly vital, offering innovative 
methods to enhance output and efficiency (Shirole et al., 2021). Machine learning advances, 
particularly in predictive analytics and panel layout optimization, have made solar energy more reliable 
and easier to integrate into existing power networks (Ghaithan et al., 2021; Behzadi & Sadrizadeh, 
2023). One key application of artificial intelligence in solar energy is predictive analytics, where 
algorithms analyze historical weather patterns, solar radiation levels, and various environmental factors 
to forecast solar power output with high accuracy (Cheng et al., 2023; Al-Buraiki & Al-Sharafi, 2021). 
This capability is crucial for efficient grid management, enabling better integration of solar energy with 
other electricity sources, thereby ensuring a steady energy supply and reducing reliance on non-
renewable backups (Jafari et al., 2022; Adun et al., 2022). 
 
Moreover, artificial intelligence plays a critical role in optimizing the positioning and orientation of solar 
panels. By analyzing sunshine patterns, topography, and other geographic features, artificial 
intelligence algorithms can recommend optimal locations and angles for solar panel deployment to 
maximize energy capture (Wang et al., 2020; Said et al., 2022). This optimization not only enhances 
the efficiency of large-scale solar farms but also ensures that smaller installations, such as rooftop 
panels, significantly contribute to electricity production (Quitiaquez et al., 2021; Damayanti et al., 2021). 
Additionally, artificial intelligence aids in the maintenance and operation of solar power plants by 
predicting equipment faults and detecting when solar panels are underperforming due to issues like dirt 
accumulation or damage. This predictive maintenance capability allows for proactive issue resolution, 
minimizing downtime and maximizing the efficiency and longevity of solar energy systems (Zhang et al., 
2023; Kallio & Siroux, 2023; Chakraborty et al., 2023). 
 



 A survey done on the application of artificial intelligence (AI) and mathematical models in optimizing 
power grids driven by renewable energy sources reported that AI techniques such as machine learning 
algorithms, neural networks, and reinforcement learning could enhance load forecasting, fault 
detection, and grid stability. For instance, the implementation of a machine learning-driven demand-
response scheme was shown to reduce operational expenses by 30% and improve grid reliability by 
25% ( Srinivasan et al., 2023). Additionally, the study quantified a 20% increase in the integration 
efficiency of renewable sources. However, it also highlighted limitations, such as the need for large 
datasets to train accurate models and the significant computational resources required. These findings 
suggest that AI-driven simulations could address the infrastructural and financial barriers in energy-
scarce African regions by optimizing the allocation and utilization of renewable energy resources. 
Specifically, by enhancing grid stability and load forecasting, AI can reduce the need for expensive 
infrastructure upgrades and minimize financial risks associated with renewable energy projects. 

2.4.2  Simulations and Modelling in the Solar Energy Domain 

Daghsen et al. (2023) proposed a universal model for solar radiation exergy accounting focusing on 
Tunisia. Exergy is the measure of how much of the sunlight’s energy is potentially usable for conversion 
into other forms of energy, like electricity, under specific environmental conditions. Using meteorological 
data, including solar radiation, ambient temperature, and relative humidity, the model provided a 
detailed quantification of solar radiation exergy. The study presented results showing an average 
exergy efficiency of 35% under typical Tunisian climatic conditions, with peak efficiencies reaching up 
to 45% during optimal conditions. Validation against empirical data showed a mean absolute 
percentage error (MAPE) of less than 5%, confirming the model's accuracy and reliability. This model 
can be particularly effective in optimizing solar energy projects in diverse African environments by 
providing precise exergy calculations that can guide the efficient design and operation of solar power 
systems. By offering accurate exergy accounting, this model helps overcome infrastructural barriers by 
ensuring that solar projects are designed to maximize efficiency and minimize resource wastage. 
 
Seane et al. (2024) investigated the optimization of microgrid systems using real-time residential data in 
Palapye, Botswana. The hybrid model, integrating solar PV, wind, and battery storage, achieved an 
optimal energy management strategy with an efficiency improvement of 20% and a cost reduction of 
15%. The study utilized advanced optimization algorithms, resulting in a reliable and efficient microgrid 
system capable of addressing the region's energy needs. This optimization is critical for overcoming the 
infrastructural challenges and financial constraints in deploying microgrids in rural and urban settings. 
By optimizing energy management, AI-driven simulations reduce the need for costly infrastructure and 
enhance the financial viability of microgrid projects. 
 
Fumtchum et al. (2024) proposed a model for predicting the efficiency of solar photovoltaic energy 
injection into a localized subtropical grid, using Douala as a case study. The model incorporated actual 
generation trend curves, achieving an efficiency prediction with an RMSE of 4.2%. This approach 
provided accurate predictions of energy injection, enhancing the reliability and efficiency of the local 
grid and reducing energy costs by 12%. By providing precise efficiency predictions, AI-driven 
simulations can help optimize energy injection into local grids, addressing both infrastructural and 
financial barriers. Accurate efficiency predictions ensure that energy injection is maximized, reducing 
the need for additional infrastructure and enhancing the financial viability of renewable energy projects. 
 
Dobreva et al. (2015) developed an energy yield model for PV systems operating under Namibian 
conditions. The model predicted an annual energy yield of 1,800 kWh/kWp, with a model accuracy of 
95% as validated against empirical data. This high level of accuracy underscores the significant 
potential for solar energy generation in Namibia, with an estimated LCOE of $0.05 per kWh. By 
providing precise energy yield predictions, AI-driven simulations can optimize the design and operation 
of PV systems in similar climatic conditions, addressing both infrastructural and financial barriers. 



Accurate yield predictions ensure that projects are economically viable and technically sound, reducing 
the risk of financial loss and underperformance. 
 
Ebhota and Tabakov (2023) conducted an assessment of the solar photovoltaic potential in selected 
site locations across sub-Saharan Africa using geographical information systems (GIS) and 
meteorological data. The assessment revealed that locations such as Lagos, Nairobi, and Accra 
exhibited high solar irradiance levels, with annual averages of 5.5 kWh/m²/day. The economic analysis 
predicted a levelized cost of electricity (LCOE) ranging from $0.04 to $0.06 per kWh, making solar PV a 
financially viable option for these regions. This assessment provides valuable insights into the most 
effective locations for solar energy projects and can guide strategic planning and investment in 
renewable energy infrastructure. By identifying optimal sites for solar PV installations, AI-driven 
assessments help overcome infrastructural barriers by ensuring that projects are developed in locations 
with the highest potential for energy generation, thus reducing the risk of underperformance and 
financial loss. 
 
Similarly, Gerbo et al. (2020) conducted a study aimed at identifying high-potential solar sites by 
integrating various spatial and meteorological data, including solar irradiance, land use, and proximity 
to existing electrical infrastructure. The study used a GIS-based approach to model the potential sites 
for grid-connected solar power in the East Shewa Zone of Ethiopia. The results showed that the 
identified sites had an average solar irradiance of 6 kWh/m²/day, making them highly suitable for solar 
power generation. The GIS-based modeling effectively pinpointed optimal locations for solar 
installations, facilitating strategic planning and infrastructure development. By providing detailed spatial 
analysis, this approach helps overcome infrastructural barriers by ensuring that solar projects are sited 
in locations with the highest potential for energy generation, thus maximizing efficiency and financial 
returns. 
 

 



 
Figure 2.4 Model structure for identifying high-potential sites for solar farms in Africa (Gerbo et 
al., 2020)  
 
Van Vuuren et al. (2019)  proposed a simulation-based theoretical preconstruction process for 
implementing solar photovoltaic (PV) technology in South African shopping centers. Detailed 
simulations indicated a potential energy yield of 1,200 MWh per year for a 1 MW installation, with a 
predicted return on investment (ROI) of 7 years. The simulation accounted for local climatic conditions, 
resulting in a model accuracy with a mean bias error (MBE) of 4%. This preconstruction process 
significantly reduced the financial risks associated with large-scale solar PV projects. AI-driven 
simulations can provide a thorough assessment before construction and therefore help overcome 
infrastructural barriers and ensure the feasibility and economic viability of renewable energy projects. 
Simulating different scenarios allows these models to optimize planning that minimizes costs and 
maximizes energy output, thus addressing financial barriers. 
Building on previous research, Van Vuuren et al. (2021) validated a simulation-based pre-assessment 
process for rooftop solar PV technology in South African shopping centers. Using actual performance 
data, the validation showed an energy yield prediction accuracy with an RMSE of 5% and an ROI of 6 
years. This validation process supported the pre-assessment model's reliability and its effectiveness in 
predicting the economic viability of rooftop solar PV installations. AI-driven simulations provide accurate 
pre-assessment data which enable mitigation of financial risks and support the successful 
implementation of renewable energy projects. The accurate predictions of energy yields and financial 
returns reduce uncertainty and enhance investor confidence, addressing financial barriers to project 
funding. 
 
The table below provides a summary of the reviewed articles, highlighting their respective outcomes, AI 
techniques, and the types of data used. 
 

 2.5 Review of Wind Energy Power Systems and AI Application + Simulations and 
Modelling 

2.5.1 Review of Wind Energy Power Systems and AI Application 

Wind is an abundant energy source that can be harnessed without producing carbon emissions. Wind 
power represents a rapidly advancing sector within renewable energy technologies, demonstrating 
significant growth compared to other energy sources under exploration (Correa-Jullian et al., 2022). 
Worldwide, the potential of wind energy in SSA exceeds the region's energy consumption, with 
considerable room for further expansion (Global Wind Energy Council, 2022). Despite these 
advantages and the ongoing development of wind power, integrating it into existing power grids 
presents various challenges. Fluctuating wind patterns can introduce harmonics, disrupt voltage levels, 
compromise grid stability, and cause issues with unit commitment and scheduling  (Weschenfelder et 
al., 2020). To address these issues, Artificial Intelligence (AI) techniques, particularly Artificial Neural 
Networks (ANN), are pivotal in enabling faster and more cost-effective predictions across short-term, 
medium-term, and long-term forecasts. 
 



 
 
Figure 2.2 Wind power potential  (Belward et al., n.d.) 
 
Figure 2.2 shows the potential for wind power generation calculated in GWh per km², with regions 
containing water bodies, forests, cities, and protected areas excluded. This estimate assumes a density 
of 5 turbines per km². The figure also includes the locations of existing power grid infrastructure, 
marked with their respective voltage capacities in volts. Wind turbines are used to convert the kinetic 
energy of wind into usable energy forms, such as electricity. Consequently, the installation of wind 
turbines has significantly increased due to their negligible carbon emissions (Global Wind Energy 
Council, 2022; Weschenfelder et al., 2020). However, the number of WTs that can be installed is 
constrained by concerns related to species protection, as well as geopolitical and supply risks (Global 
Wind Energy Council, 2022). Additionally, the high production and maintenance costs associated with 
WTs are significant factors to consider before installation (Njiri & Söffker, 2016). Therefore, given the 
limitations on increasing the number of WTs, it is crucial to maximize zero-carbon energy generation 
from wind by further optimizing the energy efficiency of turbines. 
 
The complex interactions between atmospheric flow and wind blades influence the energy efficiency of 
wind turbines. Atmospheric flow, characterized by turbulent boundary layer flow with moving boundaries 
and external energy sources, is highly non-linear (Shin et al., 2022). The interaction between this 
turbulent flow and the wind blades also exhibits non-linearity, depending on factors such as wind 
direction, angle of attack, and blade geometry. Therefore, designing WTs requires simulations or 
experiments that capture the full interactions between turbulent atmospheric flow and turbine blades 
(Jie et al., 2020). Recently, several studies have utilized artificial intelligence to enhance WT energy 
efficiency (Wang et al., 2021; Lin & Liu, 2020) and to improve WT maintenance (Gustavo et al., 2021; 
Correa-Jullian et al., 2022).  For instance, neural networks (NN), a type of ML model, have shown 
significant promise in wind energy harvesting due to their advanced capability to learn non-linear 



patterns, such as the chaotic patterns found in atmospheric flows (Shin et al., 2022). 
 

 
 
Figure 2.3 Using AI to improve the energy efficiency of Wind Turbines  (Shin et al., 2022) 
 

2.5.2  Simulations and Modelling in the Wind Energy Domain 

 
Odero et al. (2022) conducted a study focused on wind energy resource prediction and optimal storage 
sizing to ensure dispatchability within the Kenyan power grid. The researchers utilized a combination of 
wind resource data and storage sizing algorithms to develop a predictive model. The results indicated 
that integrating optimal storage solutions with wind energy could significantly enhance the reliability of 
the power supply. Specifically, the study found that the optimal sizing of storage systems could reduce 
energy wastage by 15% and improve dispatchability by 20%. This approach helps address the 
infrastructural and financial barriers by ensuring a stable and predictable energy supply from wind 
resources. 
 
Adedeji et al. (2021) employed a hybrid neuro-fuzzy system to investigate the short-term variability of 
wind resources in South Africa, aiming to enhance site suitability analysis for wind energy projects. A 
hybrid neuro-fuzzy system combines neural networks and fuzzy logic to create a model that leverages 
the learning capabilities of neural networks with the intuitive, human-like reasoning of fuzzy logic. This 
integration allows the system to handle uncertain and imprecise data effectively, making it highly 
suitable for predicting environmental variables like wind speed and direction. The researchers 
developed a model that significantly improved prediction accuracy by 18% over traditional methods, 
achieving an RMSE of 2.8%. This approach provides a robust tool for site selection, ensuring optimal 
locations for wind energy projects and thus mitigating financial risks and improving project feasibility. 
 
Fuzzy logic tools were also applied by Placide and Lollchund (2024) to conduct a study on wind farm 
site selection in Burundi using GIS-based mathematical modeling. The study combined spatial data and 
fuzzy logic to evaluate the suitability of various sites for wind farm development. The results identified 
several high-potential sites with optimal wind conditions and minimal environmental impact. The use of 
GIS-based fuzzy logic modeling enhanced the precision of site selection, leading to more informed 
decision-making and efficient resource allocation. This method helps overcome infrastructural barriers 



by ensuring that wind farms are located in the most suitable areas, reducing the risk of 
underperformance. 
 
On the other hand, Bilal et al. (2022) investigated the application of adaptive neuro-fuzzy inference 
systems (ANFIS) for identifying wind power conversion system models. The study applied ANFIS to 
optimize the performance of wind turbines, achieving an accuracy improvement of 20% over 
conventional methods. The results demonstrated that ANFIS could effectively model the non-linear 
dynamics of wind power conversion, leading to enhanced system performance and reduced operational 
costs. This approach helps address financial barriers by improving the efficiency and cost-effectiveness 
of wind energy projects. 
 
Dotche et al. (2019) explored the use of support vector regression (SVR) for wind speed prediction at 
the Lome Site. The study developed an SVR model to predict wind speeds based on historical 
meteorological data. The results demonstrated that the SVR model achieved a prediction accuracy of 
92%, with an RMSE of 3.1%. This high level of accuracy in wind speed prediction supports the efficient 
planning and operation of wind energy projects. The SVR model helps reduce the uncertainty and 
financial risks associated with wind energy investments by providing reliable wind speed forecasts. 
 
Habtemariam et al. (2023) utilized a Bayesian optimization-based Long Short-Term Memory (LSTM) 
model for wind power forecasting in the Adama District of Ethiopia. The study aimed to improve the 
accuracy of wind power predictions by integrating Bayesian optimization with LSTM neural networks. 
The results showed a significant reduction in forecast errors, with an RMSE of 2.5%. This advanced 
forecasting model enhances the reliability of wind power predictions, aiding in better grid integration 
and energy management. By optimizing wind power forecasts, this model addresses both infrastructural 
and financial challenges in wind energy deployment. 

3. Data availability  

A notable challenge in applying AI-driven simulations and models is the need for comprehensive, high-
quality data. Many regions in Sub-Saharan Africa (SSA) need more data, particularly high-resolution 
meteorological, environmental, and operational datasets necessary for accurate modeling. The success 
of AI in optimizing renewable energy systems hinges on the availability of robust datasets, as 
incomplete or low-quality data can significantly undermine the reliability of predictive models (Adedeji et 
al., 2021; Alzain et al., 2023). For instance, studies like those by Bilal et al. (2022) and Bouabdallaoui et 
al. (2023) highlight how data limitations can impede the accurate identification of wind power 
conversion systems and short-horizon wind energy predictions, respectively. Moreover, Adun et al. 
(2022) emphasize that while AI models can optimize solar thermal applications, their effectiveness is 
constrained by the quality and granularity of input data. This challenge underscores the need for 
enhanced data collection infrastructure and integrating existing reanalysis data to bridge gaps, ensuring 
AI-driven models can perform effectively and reliably in SSA's renewable energy landscape. 

Ayik et al. (2021) note that investigating wind and solar resource potential and developing wind energy 
projects can significantly enhance using existing reanalysis data. The researchers used data ranging 
from 1981 to 2019 for 33 locations from Modern-Era Retrospective Analysis for Research and 
Applications version 2 (MERRA-2) to develop statistics for each area, considering annual and long-term 
monthly averages, wind direction, and hub heights between 30m and 50m above ground level. They 
attributed the data to five different distribution functions to assess wind power density, with results 
showing wind speeds of 2.36m/s to 5.08m/s and wind power density between 14.39W/m2 and 
128.36W/m2, concluding that utility-scale wind power plants are negligible. At the same time, there is 
great potential for small wind turbines. The potential benefit of utilizing existing data has also been 



demonstrated by various studies. McKenna et al. (2021) emphasized the need for high-resolution, 
large-scale assessments to define wind potential accurately, pointing to the critical role of existing 
datasets, methodologies, and future research in refining these assessments. Ahmad et al. (2022) 
effectively employed reanalysis data for offshore wind resource assessment, highlighting its utility in 
capturing wind patterns and informing project development. Similarly, Dabar et al. (2022) conducted a 
techno-economic analysis in Djibouti, reinforcing the viability of wind energy and green hydrogen 
production based on pre-existing data. Moreover, Chen and Ji (2024) reviewed solar and wind energy 
projections, underscoring the importance and potential of models based on existing datasets in 
forecasting and optimizing renewable energy resources. Petrenko et al. (2023) supported the 
reanalysis of data for the projection of wind speed and energy calculations, while Souza et al. (2023) 
highlighted its application in the Northern Amazon for both wind and solar energy generation. 
Collectively, these studies affirm the conclusion by Ayik et al. (2021) on the potential of leveraging 
existing data for investigating and developing solar and wind energy projects, demonstrating the 
breadth and depth of research supporting this approach. 

4. Conclusion  

Renewable energy initiatives in Sub-Saharan Africa (SSA) confront numerous barriers, including 
inadequate grid infrastructure, financial constraints, limited technical expertise, regulatory challenges, 
and the scarcity of quality data, which collectively hinder the integration and efficiency of renewable 
sources such as wind and solar energy (IEA, 2022; Adun et al., 2022; IRENA, 2021; Odero et al., 
2022). These systemic and operational challenges necessitate strategic interventions to improve 
infrastructure, secure investments, enhance expertise, and refine regulatory frameworks. The 
integration of AI can significantly mitigate these challenges by enhancing forecast accuracy, optimizing 
operational efficiency, and improving management practices in renewable energy systems. AI 
applications, including machine learning algorithms, have successfully predicted solar irradiance and 
wind patterns, facilitating better project planning and operational efficiency (Mfetoum et al., 2024). 
Notable projects like the Garissa Solar Power Plant in Kenya and blockchain-based mini-grids have 
demonstrated the benefits of AI in enhancing reliability and efficiency in renewable energy systems 
(Chirchir et al., 2023; Finke et al., 2022). Moreover, AI-driven simulations help in optimizing resource 
allocation, reducing operational costs, and increasing economic viability through predictive 
maintenance and accurate energy yield predictions, thereby enhancing investment appeal and project 
sustainability (van Vuuren et al., 2019, 2021; Ebhota & Tabakov, 2023; Gerbo et al., 2020; Placide & 
Lollchund, 2024). 

In conclusion, AI-driven simulations can be critical in overcoming the infrastructural and financial 
barriers that impede renewable energy adoption in Sub-Saharan Africa (SSA). These simulations 
enhance solar and wind energy project planning, deployment, and operational efficiency through 
advanced predictive analytics and optimization algorithms. By accurately simulating weather patterns, 
energy production, and consumption demands, AI enables investors and developers to identify the 
most advantageous sites for renewable energy projects and predict their future outputs with high 
precision. This level of predictability and precision in planning significantly reduces the financial risks 
typically associated with the high initial capital costs of establishing renewable energy systems. 
Furthermore, developers can use AI-driven simulations to streamline and optimize the construction and 
maintenance processes. AI can predict potential system failures or maintenance needs before they 
become critical, thus extending the lifespan of the infrastructure and reducing unexpected downtime. 
This predictive maintenance capability minimizes operational costs while maximizing system uptime 
and reliability. 
 
Despite the potential of AI-driven simulations to optimize renewable energy projects, application in SSA 
is hindered by technological, infrastructural, financial, socio-political, and environmental aspects. The 



lack of computational resources and specialized technical expertise limits the development and 
maintenance of these advanced systems (Behzadi & Sadrizadeh, 2023; Nyarko et al., 2023). 
Infrastructural issues are significant, with outdated grid infrastructure unable to support the variability of 
renewable energy sources (International Energy Agency, 2020), and poor connectivity in remote areas 
hampering real-time monitoring and optimization (Wang et al., 2020). Furthermore, high initial costs and 
ongoing maintenance expenses can be prohibitive in resource-constrained environments, making it 
difficult to secure necessary investments (Adedeji et al., 2021; Adun et al., 2022). Socio-political 
barriers, such as inconsistent regulatory environments and resistance to adopting new technologies, 
further impede progress. Regulatory uncertainty can deter investment, while the resistance from 
stakeholders often stems from a lack of understanding and trust in AI-driven solutions (Fumtchum et al., 
2024; Bilal et al., 2022). Additionally, environmental and geographical limitations include the need for 
region-specific models due to diverse climate conditions and the environmental impact of deploying 
large-scale AI-driven renewable energy systems (Gerbo et al., 2020; Said et al., 2022). These 
multifaceted challenges necessitate a holistic approach and will to overcome the barriers to 
implementing AI technologies in Africa's renewable energy sector. 
 
For all stakeholders, integrating AI into renewable energy systems represents a move towards more 
sustainable, reliable, and financially viable energy solutions. The technology enables a shift from 
traditional speculative planning to a data-driven approach that offers enhanced accuracy, efficiency, 
and profitability. Adopting AI-driven simulations in renewable energy projects in Africa could serve as a 
model for SSA regions facing similar infrastructural and economic challenges, paving the way for the 
continent’s transition to more sustainable energy solutions. Therefore, private investors, government 
investors, policymakers, and developers must consider leveraging AI-driven simulations when planning 
and implementing wind and solar energy systems to ensure Africa has a chance at energy security. 
 
 
 
 
 

Annexes 
 
Annex1: The table below provides a summary of the reviewed articles, highlighting their respective 
outcomes, AI techniques, and the types of data used, as it pertains to AI-driven Simulation and 
Modelling in Solar Energy Domain in Africa  
 

Reference/year AI 
technique/tool 

Data Type Output/results Conclusion 

Daghsen et al. 
(2023) 

Universal 
Exergy Model 

Meteorological 
data (solar 
radiation, ambient 
temperature, 
relative humidity) 

Achieved an 
average exergy 
efficiency of 35% 
with a peak of 
45%, MAPE < 5% 

Accurate exergy 
accounting optimizes 
solar energy 
utilization, guiding 
efficient system design 
and operation 

van Vuuren et 
al. (2019) 

PVSyst Architectural and 
environmental 
data 

Potential energy 
yield of 1,200 
MWh/year, ROI 

Preconstruction 
simulations reduce 
financial risks and 



period of 7 years, 
MBE of 4% 

optimize project 
feasibility 

Ebhota and 
Tabakov (2023) 

Homer, Solargis 
Prospect, 
planner, 
PVsyst, and 
PV*SOL 

GIS data, 
meteorological 
data 

Annual solar 
irradiance 
averages 5.5 
kWh/m²/day, 
LCOE of $0.04 to 
$0.06 per kWh 

GIS-based 
assessments identify 
optimal sites, guiding 
strategic planning and 
investment 

van Vuuren et 
al. (2021) 

PVSyst Performance data 
from existing 
installations 

Energy yield 
prediction 
accuracy with 
RMSE of 5%, ROI 
of 6 years 

Validated pre-
assessment models 
reduce financial risks 
and support project 
implementation 

Dobreva et al. 
(2015)  

Energy Yield 
Model 

Local climatic 
data, empirical 
data 

Annual energy 
yield of 1,800 
kWh/kWp, model 
accuracy of 95%, 
LCOE of $0.05 
per kWh 

Accurate yield 
modeling optimizes 
PV system design and 
operation, ensuring 
economic viability 

Seane et al. 
(2024) 

Hybrid Model 
with 
Optimization 
Algorithms 

Real-time 
residential data 

Efficiency 
improvement of 
20%, cost 
reduction of 15% 

Optimized energy 
management 
enhances microgrid 
reliability and financial 
viability 

Fumtchum et 
al. (2024)  

Generation 
Trend Curves 
Model 

Actual generation 
data 

Efficiency 
prediction RMSE 
of 4.2%, energy 
cost reduction by 
12% 

Precise efficiency 
predictions optimize 
energy injection, 
improving grid 
reliability and reducing 
costs 

Gerbo et al. 
(2020) 

Multi-criteria 
decision-
making, GIS 
tool  

GIS data, 
meteorological 
data 

Identification of 
high-potential 
solar sites with an 
average solar 
irradiance of 6 
kWh/m²/day 

The GIS-based 
approach effectively 
identifies optimal grid-
connected solar power 
sites, aiding in 
strategic planning and 
infrastructure 
development 

 
 

Annex2: The table below provides a summary of the reviewed articles, highlighting their respective 
outcomes, AI techniques, and the types of data used, as it pertains to AI-driven Simulations and 
Modelling in Wind Energy Domain in Africa 



 
 

Reference Purpose AI Technique/Tool 
Used 

Type of Data
  

Results/Outcomes  

Odero et al., 
(2022) 

Wind energy 
resource prediction 
and optimal 
storage sizing to 
ensure 
dispatchability in 
the Kenyan power 
grid  

Storage sizing 
algorithms  

Wind resource 
data, storage 
system data
  

Optimal storage sizing 
reduced energy 
wastage by 15% and 
improved dispatch 
ability by 20%  

Adedeji et al., 
(2021)  

Investigating short-
term variability of 
wind resources for 
site suitability 
analysis in South 
Africa  

Hybrid neuro-
fuzzy system  

Wind resource 
data  

Improved prediction 
accuracy by 18%, 
RMSE of 2.8%  

Placide et al., 
(2024)  

Wind farm site 
selection in 
Burundi  

GIS-based 
mathematical 
modeling and 
fuzzy logic tools  

Spatial data, 
wind resource 
data  

Identified high-
potential sites with 
optimal wind 
conditions, aiding in 
strategic planning  

Dotche et al., 
(2019)  

Wind speed 
prediction in Lome-
Site  

Support Vector 
Regression (SVR)
  

Historical 
meteorological 
data  

Achieved 92% 
prediction accuracy, 
RMSE of 3.1%  

Habtemariam 
et al., (2023)
  

Wind power 
forecasting in the 
Adama District, 
Ethiopia  

Bayesian 
optimization-
based Long Short-
Term Memory 
(LSTM) model  

Wind power 
data  

Reduced forecast 
errors, RMSE of 2.5%  

Bilal et 
al.,  (2022)
  

Identifying wind 
power conversion 
system models  

Adaptive neuro-
fuzzy inference 
systems (ANFIS)
  

Wind power 
conversion data
  

Improved model 
accuracy by 20%, 
enhanced system 
performance, and 
reduced operational 
costs  

 

 
 

  



 
References 

 
Abualigah, L., Zitar, R. A., Almotairi, K. H., Hussein, A. M., Abd Elaziz, M., Nikoo, M. R., & Gandomi, A. 
H. (2022). Wind, Solar, and Photovoltaic Renewable Energy Systems with and without Energy Storage 
Optimization: A Survey of Advanced Machine Learning and Deep Learning Techniques. Energies, 
15(2), 578. https://doi.org/10.3390/en15020578 
 
Adair-Rohani, H., Zukor, K., Bonjour, S., Wilburn, S., Kuesel, A. C., Hebert, R., & Fletcher, E. R. (2013). 
Limited electricity access in health facilities of sub-Saharan Africa: a systematic review of data on 
electricity access, sources, and reliability. Global Health: Science and Practice, 1(2), 249–261. 
https://doi.org/10.9745/ghsp-d-13-00037 
 
Adedeji, P. A., Akinlabi, S. A., Madushele, N., & Olatunji, O. O. (2021). Hybrid neurofuzzy investigation 
of short-term variability of wind resource in site suitability analysis: a case study in South Africa. Neural 
Computing and Applications, 33(19), 13049–13074. https://doi.org/10.1007/s00521-021-06001-x 
 
Adun, H., Wole‐Osho, I., Okonkwo, E. C., Ruwa, T., Agwa, T., Onochie, K. K., Ukwu, H., Bamisile, O., 
& Dagbasi, M. (2022). Estimation of thermophysical property of hybrid nanofluids for solar Thermal 
applications: Implementation of novel Optimizable Gaussian Process regression (O-GPR) approach for 
Viscosity prediction. Neural Computing and Applications, 34(13), 11233–11254. 
https://doi.org/10.1007/s00521-022-07038-2 
 
African Development Bank. (2019, January 28). Why Africa is the next renewables powerhouse. African 
Development Bank - Building Today, a Better Africa Tomorrow. https://www.afdb.org/en/news-and-
events/why-africa-is-the-next-renewables-powerhouse-18822 
 
African Development Bank Group. (2019, June 7). Light Up and Power Africa – A New Deal on Energy 
for Africa. African Development Bank - Building Today, a Better Africa Tomorrow. 
https://www.afdb.org/en/the-high-5/light-up-and-power-africa-%E2%80%93-a-new-deal-on-energy-for-
africa 
 
Agoundedemba, M., Kim, C. K., & Kim, H.-G. (2023). Energy Status in Africa: Challenges, Progress 
and Sustainable Pathways. Energies, 16(23), 7708. https://doi.org/10.3390/en16237708 
 
Ahmad, S., Abdullah, M., Kanwal, A., Tahir, Z. ul R., Saeed, U. B., Manzoor, F., Atif, M., & Abbas, S. 
(2022). Offshore wind resource assessment using reanalysis data. Wind Engineering, 
0309524X2110693. https://doi.org/10.1177/0309524x211069384 
 
Al-Buraiki, A. S., & Al-Sharafi, A. (2021). Technoeconomic analysis and optimization of hybrid 
solar/wind/battery systems for a standalone house integrated with electric vehicle in Saudi Arabia. 
Energy Conversion and Management, 250, 114899. https://doi.org/10.1016/j.enconman.2021.114899 
 
Alam, Md. S., Al-Ismail, F. S., Salem, A., & Abido, M. A. (2020). High-Level Penetration of Renewable 
Energy Sources Into Grid Utility: Challenges and Solutions. IEEE Access, 8, 190277–190299. 
https://doi.org/10.1109/ACCESS.2020.3031481 
 
Aldeman, M. R., Jo, J. H., Loomis, D. G., & Krull, B. (2023). Reduction of solar photovoltaic system 
output variability with geographical aggregation. Renewable and Sustainable Energy Transition, 3, 
100052. https://doi.org/10.1016/j.rset.2023.100052 
 



Alzain, E., Al-Otaibi, S., Aldhyani, T. H. H., Alshebami, A. S., Almaiah, M. A., & Jadhav, M. E. (2023). 
Revolutionizing Solar Power Production with Artificial Intelligence: A Sustainable Predictive Model. 
Sustainability, 15(10), 7999. https://doi.org/10.3390/su15107999 
 
Ayik, A., Ijumba, N., Kabiri, C., & Goffin, P. (2021). Preliminary wind resource assessment in South 
Sudan using reanalysis data and statistical methods. Renewable and Sustainable Energy Reviews, 
138, 110621. https://doi.org/10.1016/j.rser.2020.110621 
 
Babawarun, T., Raphael, D., Scott, T. O., & Neye-Akogo, C. (2023). A Comprehensive Review of Wind 
Turbine Modeling for Addressing Energy Challenges in Nigeria and South Africa in the 4IR Context. 
The Journal of Engineering and Exact Sciences, 9(2), 15479-01e. 
https://doi.org/10.18540/jcecvl9iss2pp15479-01e 
 
Behzadi, A., & Sadrizadeh, S. (2023). A rule-based energy management strategy for a low-temperature 
solar/wind-driven heating system optimized by the machine learning-assisted grey wolf approach. 
Energy Conversion and Management, 277, 116590. https://doi.org/10.1016/j.enconman.2022.116590 
 
Belward, A., Bisselink, B., Bódis, K., Brink, A., Dallemand, J.-F., Roo, A., Huld, T., Kayitakire, F., 
Mayaux, P., Moner-Girona, M., Ossenbrink, H., Pinedo, I., Sint, H., Thielen, J., Szabó, S., Tromboni, U., 
Willemen, L., & Monforti, F. (n.d.). Renewable energies in Africa. https://doi.org/10.2788/1881 
 
Bilal, B., Adjallah, K. H., Sava, A., Yetilmezsoy, K., & Kıyan, E. (2022). Wind power conversion system 
model identification using adaptive neuro-fuzzy inference systems: A case study. Energy, 239, 122089. 
https://doi.org/10.1016/j.energy.2021.122089 
 
Bouabdallaoui, D., Haidi, T., Elmariami, F., Derri, M., & Mellouli, E. M. (2023). Application of four 
machine-learning methods to predict short-horizon wind energy. Global Energy Interconnection, 6(6), 
726–737. https://doi.org/10.1016/j.gloei.2023.11.006 
 
Bouquet, P., Jackson, I., Nick, M., & Kaboli, A. (2023). AI-based forecasting for optimised solar energy 
management and smart grid efficiency. International Journal of Production Research, 1–22. 
https://doi.org/10.1080/00207543.2023.2269565 
 
Bruck, A. (2019). Artificial Intelligence in rural off-grid Polygeneration Systems: A Case Study with 
RVE.Sol focusing on Electricity Supply & Demand Balancing. http://www.diva-
portal.org/smash/get/diva2:1372646/FULLTEXT01.pdf 
 
Bustamam, A., Sarwinda, D., Abdillah, B., & Kaloka, T. P. (2020). Detecting Lesion Characteristics of 
Diabetic Retinopathy Using Machine Learning and Computer Vision. International Journal on Advanced 
Science, Engineering and Information Technology, 10(4), 1367. 
https://doi.org/10.18517/ijaseit.10.4.8876 
 
Capote-Leiva, J., Villota-Rivillas, M., & Muñoz-Ordóñez, J. (2022). Access Control System based on 
Voice and Facial Recognition Using Artificial Intelligence. International Journal on Advanced Science, 
Engineering and Information Technology/International Journal of Advanced Science, Engineering and 
Information Technology, 12(6), 2342–2342. https://doi.org/10.18517/ijaseit.12.6.16049 
 
Castellano, A., Swemmer, T., Nikomarov, M., & Kendall, A. (2015). Powering Africa. McKinsey & 
Company. https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/powering-
africa 
 



Chakraborty, D., Mondal, J., Barua, H. B., & Bhattacharjee, A. (2023). Computational solar energy – 
Ensemble learning methods for prediction of solar power generation based on meteorological 
parameters in Eastern India. Renewable Energy Focus, 44, 277–294. 
https://doi.org/10.1016/j.ref.2023.01.006 
 
Chen, G., & Ji, Z. (2024). A Review of Solar and Wind Energy Resource Projection Based on the Earth 
System Model. Sustainability, 16(8), 3339–3339. https://doi.org/10.3390/su16083339 
 
Cheng, T., Zhu, X., Yang, F., & Wang, W. (2023). Machine learning enabled learning based 
optimization algorithm in digital twin simulator for management of smart islanded solar-based 
microgrids. Solar Energy, 250, 241–247. https://doi.org/10.1016/j.solener.2022.12.040 
 
Chirchir, I. R., Park, S. jin , & Kommen, G. (2023). Machine Learning - Based Prediction and System 
Performance Modelling – A Case Study of Garissa Solar Power Plant in Kenya. 
https://doi.org/10.20944/preprints202308.1321.v1 
 
Concepcion II, R., Dadios, E., Bandala, A., Cuello, J., & Kodama, Y. (2021). Hybrid Genetic 
Programming and Multiverse-based Optimization of Pre-Harvest Growth Factors of Aquaponic Lettuce 
Based on Chlorophyll Concentration. International Journal on Advanced Science, Engineering and 
Information Technology, 11(6), 2128. https://doi.org/10.18517/ijaseit.11.6.14991 
 
Correa-Jullian, C., Cofre-Martel, S., San Martin, G., Lopez Droguett, E., de Novaes Pires Leite, G., & 
Costa, A. (2022). Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind 
Turbine Pitch Fault Detection. Energies, 15(8), 2792. https://doi.org/10.3390/en15082792 
 
Dabar, O. A., Awaleh, M. O., Waberi, M. M., & Adan, A.-B. I. (2022). Wind resource assessment and 
techno-economic analysis of wind energy and green hydrogen production in the Republic of Djibouti. 
Energy Reports, 8, 8996–9016. https://doi.org/10.1016/j.egyr.2022.07.013 
 
DAGHSEN, K., LOUNISSI, D., & BOUAZIZ, N. (2023). A universal model for solar radiation exergy 
accounting: Case study of Tunisia. Archives of Thermodynamics, 43(2). 
https://doi.org/10.24425/ather.2022.141980 
 
Damayanti, A., Arifianto, F., & Indra, T. L. (2021). Development Area for Floating Solar Panel and Dam 
in The Former Mine Hole (Void) Samarinda City, East Kalimantan Province. International Journal on 
Advanced Science, Engineering and Information Technology, 11(5), 1713. 
https://doi.org/10.18517/ijaseit.11.5.14097 
 
Danish, M. S. S. (2023). AI in Energy: Overcoming Unforeseen Obstacles. AI, 4(2), 406–425. 
https://doi.org/10.3390/ai4020022 
 
de Alencar, D. B., Affonso, C. de M., de Oliveira, R. L., Rodríguez, J. M., Leite, J., & Filho, J. R. (2017). 
Different Models for Forecasting Wind Power Generation: Case Study. Energies, 10(12), 1976. 
https://doi.org/10.3390/en10121976 
 
Dobreva, P., van Dyk, E. E., & Vorster, F. J. (2015). Energy yield modelling of PV systems operating in 
Namibian conditions. Repository.up.ac.za. http://hdl.handle.net/2263/49563 
 
Dotche, K. A., Salami, A. A., Kodjo, K. M., Ouro-Agbake, H., & Bedja, K.-S. (2019). Wind Speed 
Prediction Based on Support Vector Regression Method: a Case Study of Lome-Site. 2019 IEEE 
PES/IAS PowerAfrica. https://doi.org/10.1109/powerafrica.2019.8928724 



 
Ebhota, W. S., & Tabakov, P. Y. (2023). Assessment of solar photovoltaic potential of selected site 
locations in cities across sub-Saharan Africa. Energy Systems. https://doi.org/10.1007/s12667-023-
00625-9 
 
Elkin, C., & Witherspoon, S. (2019, February 26). Machine learning can boost the value of wind energy. 
Google DeepMind. https://deepmind.google/discover/blog/machine-learning-can-boost-the-value-of-
wind-energy/ 
 
Finke, S., Velenderić, M., Severengiz, S., Pankov, O., & Baum, C. (2022). Transition towards a full self-
sufficiency through PV systems integration for sub-Saharan Africa: a technical approach for a smart 
blockchain-based mini-grid. Renewable Energy and Environmental Sustainability, 7, 8. 
https://doi.org/10.1051/rees/2021054 
 
Flaieh, E. H., Hamdoon, F. O., & Jaber, A. A. (2020). Estimation the Natural Frequencies of a Cracked 
Shaft Based on Finite Element Modeling and Artificial Neural Network. International Journal on 
Advanced Science, Engineering and Information Technology, 10(4), 1410. 
https://doi.org/10.18517/ijaseit.10.4.12211 
 
Forootan, M. M., Larki, I., Zahedi, R., & Ahmadi, A. (2022). Machine Learning and Deep Learning in 
Energy Systems: A Review. Sustainability, 14(8), 4832. https://doi.org/10.3390/su14084832 
 
FUMTCHUM, G., EKOE A AKATA, A. M. E. A. A., MOUANGUE, R., & DAKYO, B. (2024). Predicting 
the Efficiency of Solar Photovoltaic Energy Injection in a Localized Subtropical Grid by Modelling Actual 
Generation Trend Curves: Case Study of Douala. Ijrer.org. 
https://www.ijrer.org/ijrer/index.php/ijrer/article/view/14251/pdf 
 
Gerbo, A., Suryabhagavan, K. V., & Kumar Raghuvanshi, T. (2020). GIS-based approach for modeling 
grid-connected solar power potential sites: a case study of East Shewa Zone, Ethiopia. Geology, 
Ecology, and Landscapes, 6(3), 1–15. https://doi.org/10.1080/24749508.2020.1809059 
 
Ghaithan, A. M., Al-Hanbali, A., Mohammed, A., Attia, A. M., Saleh, H., & Alsawafy, O. (2021). 
Optimization of a solar-wind- grid powered desalination system in Saudi Arabia. Renewable Energy, 
178, 295–306. https://doi.org/10.1016/j.renene.2021.06.060 
 
Global Solar Atlas. (n.d.). Globalsolaratlas.info. https://globalsolaratlas.info/download/sub-saharan-
africa 
 
Global Wind Energy Council. (2022). GWEC | GLOBAL WIND REPORT 2022 . https://gwec.net/wp-
content/uploads/2022/03/GWEC-GLOBAL-WIND-REPORT-2022.pdf 
 
Gustavo, Guilherme, Santos, Alex Maurício Araújo, Rosas, P., Tatijana Stošić, Borko Stošić, & Rosso, 
O. A. (2021). Alternative fault detection and diagnostic using information theory quantifiers based on 
vibration time-waveforms from condition monitoring systems: Application to operational wind turbines. 
Renewable Energy, 164, 1183–1194. https://doi.org/10.1016/j.renene.2020.10.129 
 
Habtemariam, E. T., Kekeba, K., Martínez-Ballesteros, M., & Martínez-Álvarez, F. (2023). A Bayesian 
Optimization-Based LSTM Model for Wind Power Forecasting in the Adama District, Ethiopia. Energies, 
16(5), 2317. https://doi.org/10.3390/en16052317 
 



International Energy Agency. (2020). Flexible resources for flexible transmission system operation IEA-
PVPS Task 14: “High Penetration of PV Systems in Electricity Grids” Subtask 3: High penetration 
solutions for central PV generation scenarios. https://iea-pvps.org/wp-content/uploads/2020/01/T14-
09_2017_Flexibility_Resources_-Final-_171012.pdf 
 
International Energy Agency. (2023). Financing Clean Energy in Africa World Energy Outlook Special 
Report In collaboration with. https://iea.blob.core.windows.net/assets/f76594a5-8a9f-4820-ba3e-
2908e03b02a9/FinancingCleanEnergyinAfrica.pdf 
 
International Energy Agency (IEA). (2024, June 6). World Energy Investment 2024 – Analysis. IEA. 
https://www.iea.org/reports/world-energy-investment-2024 
 
International Renewable Energy Agency (IRENA). (2018). Global Energy Transformation: A Roadmap 
to 2050. https://www.irena.org/-
/media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf 
 
IPCC. (2023). Synthesis report of the IPCC Sixth Assessment Report (AR6) Summary for 
Policymakers. In IPCC. Intergovernmental Panel on Climate Change. 
https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf 
 
Jafari, S., Hoseinzadeh, S., & Sohani, A. (2022). Deep Q-Value Neural Network (DQN) Reinforcement 
Learning for the Techno-Economic Optimization of a Solar-Driven Nanofluid-Assisted Desalination 
Technology. Water, 14(14), 2254. https://doi.org/10.3390/w14142254 
 
Jebli, I., Belouadha, F.-Z., Kabbaj, M. I., & Tilioua, A. (2021). Prediction of solar energy guided by 
pearson correlation using machine learning. Energy, 224(C). 
https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221003583.html 
 
Jie, W., Jingchun, C., Lin, Y., Wenliang, W., & Jian, D. (2020). Pitch control of wind turbine based on 
deep neural network. IOP Conference Series: Earth and Environmental Science, 619(1), 012034. 
https://doi.org/10.1088/1755-1315/619/1/012034 
 
Kallio, S., & Siroux, M. (2023). Photovoltaic power prediction for solar micro-grid optimal control. Energy 
Reports, 9, 594–601. https://doi.org/10.1016/j.egyr.2022.11.081 
 
Kumar, N. M., Kumar, M. R., Rejoice, P. R., & Mathew, M. (2017). Performance analysis of 100 kWp 
grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia, 117, 180–
189. https://doi.org/10.1016/j.egypro.2017.05.121 
 
Kurniawan, A., & Shintaku, E. (2022). Estimation of Hourly Solar Radiations on Horizontal Surface from 
Daily Average Solar Radiations Using Artificial Neural Network. International Journal on Advanced 
Science, Engineering and Information Technology/International Journal of Advanced Science, 
Engineering and Information Technology, 12(6), 2336–2336. https://doi.org/10.18517/ijaseit.12.6.12940 
 
Lin, Z., & Liu, X. (2020). Wind power forecasting of an offshore wind turbine based on high-frequency 
SCADA data and deep learning neural network. Energy, 201, 117693. 
https://doi.org/10.1016/j.energy.2020.117693 
 
McKenna, R., Pfenninger, S., Heinrichs, H., Schmidt, J., Staffell, I., Bauer, C., Gruber, K., Hahmann, A. 
N., Jansen, M., Klingler, M., Landwehr, N., Larsén, X. G., Lilliestam, J., Pickering, B., Robinius, M., 
Tröndle, T., Turkovska, O., Wehrle, S., Weinand, J. M., & Wohland, J. (2021). High-resolution large-



scale onshore wind energy assessments: A review of potential definitions, methodologies and future 
research needs. Renewable Energy, 182. https://doi.org/10.1016/j.renene.2021.10.027 
 
Mercer, Standard Bank, & Mida Advisors. (2021). Opportunities and impact for institutional investors 
Infrastructure financing in sub-Saharan Africa: Opportunities and impact for institutional investors 2. 
https://corporateandinvestment.standardbank.com/static_file/CIB/PDF/2021/Insights/Infrastructure_Fina
ncing_in_Sub-Saharan_Africa_for_Inst_Investors.pdf 
 
Mfetoum, I. M., Ngoh, S. K., Jean, R., Félix, B., Onguene, R., Serge, Tamba, J. G., Bajaj, M., & 
Berhanu, M. (2024). A multilayer perceptron neural network approach for optimizing solar irradiance 
forecasting in Central Africa with meteorological insights. Scientific Reports, 14(1). 
https://doi.org/10.1038/s41598-024-54181-y 
 
Mukhtar, M., Adun, H., Cai, D., Obiora, S., Taiwo, M., Ni, T., Ozsahin, D. U., & Bamisile, O. (2023). 
Juxtaposing Sub-Sahara Africa’s energy poverty and renewable energy potential. Scientific Reports, 
13(1), 11643. https://doi.org/10.1038/s41598-023-38642-4 
 
Ngonda, T., Nkhoma, R., & Ngonda, V. (2023). Perceptions of Solar Photovoltaic System Adopters in 
Sub-Saharan Africa: A Case of Adopters in Ntchisi, Malawi. Energies, 16(21), 7350. 
https://doi.org/10.3390/en16217350 
 
Nguyen, T. H., Paramasivam, P., Dong, V. H., Le, H. C., & Nguyen, D. C. (2024). Harnessing a Better 
Future: Exploring AI and ML Applications in Renewable Energy. JOIV : International Journal on 
Informatics Visualization, 8(1), 55–55. https://doi.org/10.62527/joiv.8.1.2637 
 
Njiri, J. G., & Söffker, D. (2016). State-of-the-art in wind turbine control: Trends and challenges. 
Renewable and Sustainable Energy Reviews, 60, 377–393. https://doi.org/10.1016/j.rser.2016.01.110 
 
Nyarko, K., Whale, J., & Urmee, T. (2023). Drivers and challenges of off-grid renewable energy-based 
projects in West Africa: A review. Heliyon, 9(6), e16710. https://doi.org/10.1016/j.heliyon.2023.e16710 
 
Odero, H., Wekesa, C., & Irungu, G. (2022). Wind Energy Resource Prediction and Optimal Storage 
Sizing to Guarantee Dispatchability: A Case Study in the Kenyan Power Grid. Journal of Electrical and 
Computer Engineering, 2022, 1–25. https://doi.org/10.1155/2022/4044757 
 
OECD/ACET. (2020). Quality Infrastructure in 21st Century Africa: Prioritising, Accelerating and Scaling 
up in the Context of Pida (2021-30). https://www.gtkp.com/document/quality-infrastructure-in-21st-
century-africa/ 
 
Onwusinkwue, S., Osasona, F., Ibrahim, A., Chigozie, A., Onimisi, S., Obi, C., & Hamdan, A. (2024). 
Artificial intelligence (AI) in renewable energy: A review of predictive maintenance and energy 
optimization. World Journal of Advanced Research and Reviews, 21(1), 2487–2799. 
https://doi.org/10.30574/wjarr.2024.21.1.0347 
 
Oyewo, A. S., Sterl, S., Khalili, S., & Breyer, C. (2023). Highly renewable energy systems in Africa: 
Rationale, research, and recommendations. https://doi.org/10.1016/j.joule.2023.06.004 
 
Perwira, R. I., Florestiyanto, M. Y., Nurjanah, I. R., Heriyanto, & Prasetyo, D. B. (2022). Implementation 
of Gabor Wavelet and Support Vector Machine for Braille Recognition. International Journal on 
Advanced Science, Engineering and Information Technology, 12(4), 1449. 
https://doi.org/10.18517/ijaseit.12.4.14445 



 
Petrenko, K., Kuznietsov, М., Ivanchenko, I., Кармазін, О. О., & Borsuk, A. (2023). ASSESSMENT OF 
THE POSSIBILITY OF USING WIND SPEED REANALYSIS DATA FOR WIND ENERGY 
CALCULATIONS. Vidnovluvana Energetika, 3(74), 75–85. https://doi.org/10.36296/1819-
8058.2023.3(74).75-85 
 
Placide, G., & Lollchund, M. R. (2024). Wind farm site selection using GIS-based mathematical 
modeling and fuzzy logic tools: a case study of Burundi. Frontiers in Energy Research, 12. 
https://doi.org/10.3389/fenrg.2024.1353388 
 
Quansah, D. A., Adaramola, M. S., & Mensah, L. D. (2016). Solar Photovoltaics in Sub-Saharan Africa 
– Addressing Barriers, Unlocking Potential. Energy Procedia, 106, 97–110. 
https://doi.org/10.1016/j.egypro.2016.12.108 
 
Quitiaquez, W., Estupinán-Campos, J., Nieto-Londoño, C., Isaza-Roldán, C. A., Quitiaquez, P., & 
Toapanta-Ramos, F. (2021). CFD Analysis of Heat Transfer Enhancement in a Flat-Plate Solar 
Collector with Different Geometric Variations in the Superficial Section. International Journal on 
Advanced Science, Engineering and Information Technology/International Journal of Advanced 
Science, Engineering and Information Technology, 11(5), 2039–2039. 
https://doi.org/10.18517/ijaseit.11.5.15288 
 
Ramadhan, R. A. A., Heatubun, Y. R. J., Tan, S. F., & Lee, H.-J. (2021). Comparison of physical and 
machine learning models for estimating solar irradiance and photovoltaic power. Renewable Energy, 
178(C), 1006–1019. https://ideas.repec.org/a/eee/renene/v178y2021icp1006-1019.html 
 
RES4Africa Foundation. (2023). Africa’s Energy Future is Renewable. Flagship Publication 2023. 
https://res4africa.org/wp-content/uploads/2023/06/Africas-Energy-Future-is-Renewables-
Flagship2023.pdf 
 
Ritchie, H. (2023). The number of people without electricity more than halved over the last 20 years. 
Our World in Data. https://ourworldindata.org/number-without-electricity 
 
Roome, J. (2015). Rapid, Climate-Informed Development Needed to Keep Climate Change from 
Pushing More than 100 Million People into Poverty by 2030. World Bank. 
https://www.worldbank.org/en/news/feature/2015/11/08/rapid-climate-informed-development-needed-to-
keep-climate-change-from-pushing-more-than-100-million-people-into-poverty-by-2030 
 
Sachit, M. S., Mohd, Z., Abdullah, A. F., Mohd, S., & Barakat, M. (2022). Global Spatial Suitability 
Mapping of Wind and Solar Systems Using an Explainable AI-Based Approach. ISPRS International 
Journal of Geo-Information, 11(8), 422–422. https://doi.org/10.3390/ijgi11080422 
 
Said, Z., Sharma, P., Syam Sundar, L., Nguyen, V. G., Tran, V. D., & Le, V. V. (2022). Using Bayesian 
optimization and ensemble boosted regression trees for optimizing thermal performance of solar flat 
plate collector under thermosyphon condition employing MWCNT-Fe3O4/water hybrid nanofluids. 
Sustainable Energy Technologies and Assessments, 53, 102708. 
https://doi.org/10.1016/j.seta.2022.102708 
 
Salleh, N., Yuhaniz, S. S., & Mohd Azmi, N. F. (2022). Modeling Orbital Propagation Using Regression 
Technique and Artificial Neural Network. International Journal on Advanced Science, Engineering and 
Information Technology, 12(3), 1279. https://doi.org/10.18517/ijaseit.12.3.15366 
 



Samatar, A. M., Mekhilef, S., Mokhlis, H., Kermadi, M., Diblawe, A. M., Stojcevski, A., & 
Seyedmahmoudian, M. (2023). The utilization and potential of solar energy in Somalia: Current state 
and prospects. Energy Strategy Reviews, 48, 101108. https://doi.org/10.1016/j.esr.2023.101108 
 
Santos, M. M., Vaz Ferreira, A. T., & Lanzinha, J. C. G. (2023). Overview of Energy Systems in Africa: 
A Comprehensive Review. Solar, 3(4), 638–649. https://doi.org/10.3390/solar3040034 
 
Scopelliti, R. (2023). Digital Twins: The Game-Changing Technology Revolutionising Industries. 
Www.linkedin.com. https://www.linkedin.com/pulse/digital-twins-game-changing-technology-industries-
scopelliti 
 
Seane, T. B., Samikannu, R., Oladiran, M. T., Yahya, A., Makepe, P., Gamariel, G., Kadarmydeen, M. 
B., Ladu, D., & Senthamarai, H. (2024). Modelling and optimizing microgrid systems with the utilization 
of real-time residential data: a case study for Palapye, Botswana. Frontiers in Energy Research, 11. 
https://doi.org/10.3389/fenrg.2023.1237108 
 
Sedzro, K. S. A., Salami, A. A., Agbessi, P. A., & Kodjo, M. K. (2022). Comparative Study of Wind 
Energy Potential Estimation Methods for Wind Sites in Togo and Benin (West Sub-Saharan Africa). 
Energies, 15(22), 8654. https://doi.org/10.3390/en15228654 
 
Shin, H., Rüttgers, M., & Lee, S. (2022). Neural Networks for Improving Wind Power Efficiency: A 
Review. Fluids, 7(12), 367. https://doi.org/10.3390/fluids7120367 
 
Shirole, A., Wagh, M., & Kulkarni, V. (2021). Thermal Performance Comparison of Parabolic Trough 
Collector (PTC) Using Various Nanofluids. International Journal of Renewable Energy Development, 
10(4), 875–889. https://doi.org/10.14710/ijred.2021.33801 
 
Singh, O., Yadav, M., Yadav, P., & Vinay Rishiwal. (2021). AI-Based Renewable Energy with Emerging 
Applications. CRC Press EBooks, 29–42. https://doi.org/10.1201/9781003104445-3 
 
Souza, J., de, N., Cleide, A., Vanessa Dantas Almeida, Andre, L., Leonardo, Samira, Maria, Targino, 
E., Raniere, & Marcos, A. (2023). Wind and Solar Energy Generation Potential Features in the Extreme 
Northern Amazon Using Reanalysis Data. Energies (Basel), 16(22), 7671–7671. 
https://doi.org/10.3390/en16227671 
 
Sovacool, B. K., Bell, S. E., Daggett, C., Labuski, C., Lennon, M., Naylor, L., Klinger, J., Leonard, K., & 
Firestone, J. (2023). Pluralizing energy justice: Incorporating feminist, anti-racist, Indigenous, and 
postcolonial perspectives. Energy Research & Social Science, 97, 102996. 
https://doi.org/10.1016/j.erss.2023.102996 
 
Specht, J. M., & Madlener, R. (2023). Deep reinforcement learning for the optimized operation of large 
amounts of distributed renewable energy assets. Energy and AI, 11, 100215. 
https://doi.org/10.1016/j.egyai.2022.100215 
 
Srinivasan, S., Kumarasamy, S., Andreadakis, Z. E., & Lind, P. G. (2023). Artificial Intelligence and 
Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey. Energies, 
16(14), 5383. https://doi.org/10.3390/en16145383 
 
Statista. (2023). Countries with the lowest access to electricity 2021 | Statista. Statista; Statista. 
https://www.statista.com/statistics/264631/number-of-people-without-access-to-electricity-by-region/ 
 



Tesfamichael, M., Bastille, C., & Leach, M. (2020). Eager to connect, cautious to consume: An 
integrated view of the drivers and motivations for electricity consumption among rural households in 
Kenya. Energy Research & Social Science, 63, 101394. https://doi.org/10.1016/j.erss.2019.101394 
 
The World Bank. (n.d.). Energy Access in Eastern and Southern Africa. World Bank. 
https://www.worldbank.org/en/region/afr/brief/afe-energy 
 
Thusi, X., & Mlambo, V. H. (2023). The Effects of Africa’s Infrastructure Crisis and its Root Causes. 
International Journal of Environmental, Sustainability, and Social Science, 4(4), 1055–1067. 
https://doi.org/10.38142/ijesss.v4i4.671 
 
United Nations Development Programme. (2023). RES4Africa and UNDP Priorities Scaling up Clean 
Energy Investment as Priorities of Africa’s Clean Energy Transition, Launching the 2023 Flagship 
Publication in a High-level Event. UNDP. https://www.undp.org/romecentre/press-releases/res4africa-
and-undp-priorities-scaling-clean-energy-investment-priorities-africas-clean-energy-transition-
launching-2023#:~:text=The%20global%20energy%20transition%20is 
 
van Vuuren, D. J., Marnewick, A. L., & Pretorius, J. H. C. (2021). Validation of a Simulation-Based Pre-
Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African 
Shopping Centres. Sustainability, 13(5), 2589. https://doi.org/10.3390/su13052589 
 
van Vuuren, D. J., Marnewick, A., & Pretorius, J. H. C. (2019). A proposed simulation-based theoretical 
preconstruction process: The case of solar photovoltaic technology in South African shopping centres. 
Renewable and Sustainable Energy Reviews, 113, 109295. https://doi.org/10.1016/j.rser.2019.109295 
 
Wang, Y., Rao, Z., Liu, J., & Liao, S. (2020). An optimized control strategy for integrated solar and air-
source heat pump water heating system with cascade storage tanks. Energy and Buildings, 210, 
109766. https://doi.org/10.1016/j.enbuild.2020.109766 
 
Wang, Y., Zou, R., Liu, F., Zhang, L., & Liu, Q. (2021). A review of wind speed and wind power 
forecasting with deep neural networks. Applied Energy, 304, 117766. 
https://doi.org/10.1016/j.apenergy.2021.117766 
 
Weschenfelder, F., de Novaes Pires Leite, G., Araújo da Costa, A. C., de Castro Vilela, O., Ribeiro, C. 
M., Villa Ochoa, A. A., & Araújo, A. M. (2020). A review on the complementarity between grid-
connected solar and wind power systems. Journal of Cleaner Production, 257, 120617. 
https://doi.org/10.1016/j.jclepro.2020.120617 
 
Zhang, C., Zhang, Y., Pu, J., Liu, Z., Wang, Z., & Wang, L. (2023). An hourly solar radiation prediction 
model using eXtreme gradient boosting algorithm with the effect of fog-haze. Energy and Built 
Environment. https://doi.org/10.1016/j.enbenv.2023.08.001 
 
 


	1. Introduction
	1. 1 Background and Context
	1.2 Problem Statement
	1.3 Research Objectives and Questions
	1.4  Methodology
	1.4.1 Rationale for Study Selection
	a. Inclusion Criteria:


	2. Literature Review
	2.1 Energy Scarcity in Sub-Saharan Africa (SSA)
	2.2 Untapped potential of renewable energy resources in Africa/SSA
	2.3 What is Artificial Intelligence (AI)?
	2.4. Review of Solar power systems and AI Applications + Simulations and Modelling
	2.4.1 Review of Solar Energy Power Systems and AI Application
	2.4.2  Simulations and Modelling in the Solar Energy Domain

	2.5 Review of Wind Energy Power Systems and AI Application + Simulations and Modelling
	2.5.1 Review of Wind Energy Power Systems and AI Application
	2.5.2  Simulations and Modelling in the Wind Energy Domain


	3. Data availability
	4. Conclusion

